
Square Root Marginalization for Sliding-Window Bundle Adjustment
Supplementary Material

Nikolaus Demmel David Schubert Christiane Sommer Daniel Cremers Vladyslav Usenko
Technical University of Munich

{nikolaus.demmel,d.schubert,c.sommer,cremers,vlad.usenko}@tum.de

A. Proofs and mathematical properties
A.1. Pseudo-Schur complement and SVD

First, we show the properties we use in Section 4.3.2
when proving that our proposed specialized QR decomposi-
tion is equivalent to using pseudo-Schur complement. This
includes in particular the definition of the compact SVD
for a rank-deficient matrix together with a definition of the
Moore-Penrose inverse, as well as a result on subspaces of
Rn spanned by matrix columns.

Definition 1. Let J ∈ Rn×k and rank(J) = r ≤ k. The
compact singular value decomposition (SVD) of J is of the
form

J = U1D1V
>
1 , (28)

where U1 ∈ Rn×r, D1 ∈ Rr×r, and V1 ∈ Rk×r. D1 is an
invertible diagonal matrix with positive entries, U>1 U1 =
V >1 V1 = Ir.

Thus, by definition of the compact SVD, the columns of
U1 span the column space of J . For the compact SVD of
J>J , we get V1D

2
1V
>
1 .

Definition 2. The Moore-Penrose inverse (also pseudo-
inverse) of a matrix with compact SVD U1D1V

>
1 is defined

as
(U1D1V

>
1)+ = V1D

−1
1 U>1 . (29)

Thus, the pseudo-inverse of (J>J) is given by

(J>J)+ = V1D
−2
1 V >1 . (30)

Lemma 1. Let Q,U ∈ Rn×r, and let the columns of Q and
U span the same r-dimensional subspace of Rn. Further, let
both Q and U have mutually orthogonal columns of norm
1, i.e., Q>Q = U>U = Ir. Then, the following holds:

QQ> = UU> . (31)

Proof. Since the columns of Q and U span the same space,
each column of Q can be written as a linear combination of
the columns of U and vice versa. Thus, there is a matrix M

such that Q> = MU> and U> = M−1Q>. As Q>Q =
U>U = Ir, M = Q>U and M−1 = U>Q = M>. Thus,
M is orthogonal, yielding

QQ> = UM>MU> = UU> . (32)

A.2. Equivalence of pseudo-inverse and pseudo-
Schur complement

In Sec. 4.3.3, we claim that under certain conditions,
solving the full system using Moore-Penrose inverse is
equivalent to using the generalized Schur complement fol-
lowed by solving the reduced system with Moore-Penrose
inverse. Moreover, a potential backsubstitution for the µ-
variables can also be achieved using a Moore-Penrose in-
verse instead of an inverse:

∆xµ,red = H+
µµ(bµ −Hµκ∆xκ,red) . (33)

In the following, we will formalize and prove this statement.

Theorem 2. Let (26) hold, and let ∆xtot and ∆xred be de-
fined as in Sec. 4.3.3. Then,

∆xtot = ∆xred . (34)

Proof. We start by noting that

rank(Jµ) = rank(Hµµ) , (35)

rank
(
Jκ Ju

)
= rank

(
Hκκ Hκu

Huκ Huu

)
=: rκu , (36)

rank(J) = rank(H) . (37)

Thus, we can rewrite (26) as

rank(H) = rank(Hµµ) + rκu , (38)

and apply Lemma 2.3 from [14] with A11 = Hµµ. This
Lemma gives us a block-matrix expression for the pseudo-

0 100 200 300
10 17

10 12

10 7

10 2

103

108

Em VO -64 (ours)

0 100 200 300

VO -32 (ours)

0 100 200 300

VO-64

0 100 200 300

VO-32

x, y, z
roll, pitch
yaw
random

Figure 5. Where for visual-inertial odometry we expect 4 degrees of gauge freedom, for stereo visual odometry roll and pitch are not
observable and we expect 6 degrees of gauge freedom. The plots show the marginalization prior cost change ∆Em for VO on kitti10 when
perturbing the linearization point. For that, we consider perturbations by a global translation (in x, y, or z), by a global (linearized) rotation
(roll, pitch, or yaw), or by a random unit norm vector. While our square root marginalization leads to a consistent prior with expected
nullspaces for both single and double precision, in the conventional squared form accumulating error leads to inconsistency. Similar to
the VIO case (compare Fig. 4), here for VO-32 the prior over time erroneously appears to make the global pose observable, indicated by
large cost change by perturbations in gauge direction. In particular, after around 200 keyframes there is a noticeable increase, which also
coincides with worsened pose estimation (see Fig. 7).

inverse H+ of H:

H+ =

(
A −B>

−B S+

)
, (39)

S =

(
H̃ +H µ̄

κκ Hκu

Huκ Huu

)
, (40)

B = S+

(
Hκµ

0

)
H+
µµ , (41)

A = H+
µµ +H+

µµ

(
Hµκ 0

)
B . (42)

If we now compute −H+b and look at the κ- and u-
components, we get(

∆xκ,tot
∆xu,tot

)
= Bbµ − S

+

(
bκ
bu

)
= S+

(
HκµH

+
µµbµ − bκ
−bu

)
= −S+

(
b̃+ bµ̄κ
bu

)
,

(43)

which is exactly the solution of (13), i.e.,(
∆xκ,tot
∆xu,tot

)
=

(
∆xκ,red
∆xu,red

)
(44)

Similarly, from

∆xµ,tot = −Abµ +B>
(
bκ
bu

)
, (45)

after some steps, one obtains the back substitution formula
(33)

∆xµ,tot = H+
µµ(bµ −Hµκ∆xκ,red) = ∆xµ,red . (46)

(44) and (46) together conclude the proof.

√
VO-64

√
VO-32 VO-64 VO-32

kitti00 29.5 / 2.7 23.6 / 2.2 50.2 / 2.3 x
kitti02 32.0 / 3.0 25.0 / 2.3 53.2 / 2.4 x
kitti03 5.2 / 0.6 4.3 / 0.5 9.4 / 0.5 9.0 / 0.5
kitti04 1.5 / 0.2 1.2 / 0.1 2.6 / 0.1 2.5 / 0.1
kitti05 18.0 / 1.7 15.0 / 1.4 31.1 / 1.5 x
kitti06 5.8 / 0.6 4.8 / 0.5 9.8 / 0.6 9.3 / 0.6
kitti07 6.3 / 0.7 5.3 / 0.6 11.2 / 0.6 10.7 / 0.6
kitti08 26.3 / 2.5 21.2 / 2.0 44.2 / 2.1 x
kitti09 10.1 / 1.0 8.0 / 0.8 16.7 / 0.8 x
kitti10 6.9 / 0.7 5.5 / 0.6 11.6 / 0.6 9.7 / 0.6

Table 5. Total runtime in seconds spent on “optimization /
marginalization” in VO. Optimization: NS-projection for land-
marks (

√
VO-32) is almost twice as fast as the baseline using SC

(VO-64). Marginalization: conventional SC may be slightly faster,
but this step only takes a small fraction of the overall runtime.

Note on square root of the κu-system While we have
shown that H̃ = R̃>R̃ and b̃ = R̃>r̃, to complete the
square root formulation, a square root of the system includ-
ing u-variables as in (13) and (40) is given by

R̃κu =

(
J µ̄κ J µ̄u
R̃ 0

)
, r̃κu =

(
rµ̄

r̃

)
. (47)

B. Additional analysis of VO results

In this section we include additional results supporting
the claims of the main paper. While these are for the same
datasets, we expand upon some of the analysis that was
omitted due to limited space. Specifically, we show run-
times, the ablation study, as well as the nullspace and eigen-
value analysis also for VO on the KITTI dataset. Qualita-

2

proposed ablation study

opt. NS+LDLT SC+LDLT NS+LDLT SC+LDLT
marg. NS+QR NS+QR SC+SC SC+SC
precision 64 32 64 32 64 32 64 32

ATE [m] 3.216 3.216 3.216 3.216 3.217 3.293 3.216 3.479
real-time 9.4x 9.8x 8.0x 8.6x 9.4x 9.6x 8.2x 8.6x
t total [s] 24.3 23.3 28.7 26.5 24.1 23.2 28.2 26.5
t opt [s] 14.2 11.3 24.2 22.6 14.1 11.0 24.2 22.2
t marg [s] 1.4 1.1 1.2 1.0 1.4 1.3 1.2 1.2

Table 6. Different combinations of optimization and marginaliza-
tion techniques, and floating-point precision for

√
VO on KITTI.

All variants store the marginalization prior in square root form (4).
The shown metrics (ATE, runtime: total / optimization / marginal-
ization) are averages over all sequences, and the real-time factor
indicates how much faster the processing is compared to sequence
duration. The proposed square root marginalization NS+QR is de-
ciding for good accuracy in single precision, while the square root
optimization NS+LDLT leads to best runtime.

0 100 200 300

104

10 4
0

10 4

104

min

VO -64 (ours)
VO -32 (ours)

VO-64
VO-32

Figure 6. Smallest eigenvalue σmin of the marginalization prior
HessianHm evolving over time for VO on kitti10 (linear y-axis for
|σmin| < 10

−8, logarithmic elsewhere). We expect values close to
zero (positive semi-definite Hessian with gauge freedom). While
the conventional (squared) formulation in single precision leads
to negative eigenvalues with large magnitude (exceeding 10

8), ac-
cumulating error, and (ultimately) numerical failure, the proposed
square root approach has σmin of bounded magnitude (less than
10

−4) and remains stable.

tively, these are similar to the VIO results from the main
paper and thus we draw the same conclusions.

Tab. 5 shows runtimes for optimization and marginal-
ization for VO (compare VIO results in Tab. 3). It can be
seen that optimization takes a much bigger portion of total
runtime than marginalization, that for the proposed single-
precision solver

√
VO-32 it is around twice as fast as the

competing baseline VO-64, and that the square root for-
mulation benefits more in terms of runtime from switching
from double to single precision.

Tab. 6 shows the same ablation study as Tab. 4, but for
VO instead of VIO. Note that for KITTI, the twofold im-
provement in optimization runtime is not fully reflected in
an improvement of total runtime. The reason is that here the
optical flow, which is computed in a single parallel thread,
becomes the bottleneck. However, the improved optimiza-

ground truth
VO -32 (ours)

VO-32

Figure 7. Estimated visual odometry trajectories on the kitti10 se-
quence. The conventional baseline VO-64 works well with double-
precision floats, but fails in single precision (VO-32). In contrast,
the proposed square root estimator

√
VO-32 even in single preci-

sion retains the same accuracy.

tion runtime still means the required compute power is re-
duced. Overall, also for VO we conclude that only the com-
bination of all proposed improvements leads to best accu-
racy and runtime.

The analysis of numerical properties of the marginal-
ization prior Hessian of VO on kitti10 reveals similar be-
haviour to VIO (see Sec. 5.2). For the squared formulation
in single precision the marginalization prior becomes nu-
merically indefinite (Fig. 6, compare VIO results in Fig. 1
bottom) and gauge freedom vanishes (Fig. 5, compare VIO
results in Fig. 4). While initially the pose estimation works
fine, at some point the accumulating error leads to bad state
estimates and ultimately numerical failure (Fig. 7, compare
Fig. 1 top). In contrast, the proposed

√
VO has the same ac-

curacy in both single and double precision, at a significantly
reduced computational cost.

C. Notes on memory overhead

The main memory requirement of our optimization and
marginalization comes from the dense landmark blocks,
where we perform QR on the Jacobians in-place to
marginalize landmarks. [6] reports around twice the mem-
ory use compared to SC for sparse BA problems and men-
tions memory to be the limiting factor for large dense prob-
lems. However, for us the number of keyframes and num-
ber of observations per landmark are bounded in the sliding
window and thus memory use is not a major concern.

For example, for VIO on Euroc MH01 we have at most
4033 observations across all landmarks, and at most 7
keyframes (3 with IMU, state size 15, and 4 pose-only, state
size 6), so the Jacobians have in total 8066 rows and 73
columns (3+1 extra for landmark+residual), giving an ap-
proximate upper bound of 2.4MB with 32bit floats. Mea-
suring the actual difference in peak memory between the
single and double precision variants reveals 1.3MB for the

3

square root solver and 0.9MB for the SC solver, while the
vast majority of process peak memory at around 300MB is
spent in other parts of the (not memory-optimized) system
(e.g. cached image queue, logging, etc...).

A memory-conscious implementation could in fact re-
duce the required landmark-block memory by doing a one-
pass over landmarks that linearizes, marginalizes and accu-
mulates the RCS Hessian using scratch memory. Only 3
rows per landmark for back-substitution would need to be
stored.

4

