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Direct Sparse Visual-Inertial Odometry using Dynamic Marginalization

Lukas von Stumberg1, Vladyslav Usenko1, Daniel Cremers1

Abstract— We present VI-DSO, a novel approach for visual-
inertial odometry, which jointly estimates camera poses and
sparse scene geometry by minimizing photometric and IMU
measurement errors in a combined energy functional. The
visual part of the system performs a bundle-adjustment like
optimization on a sparse set of points, but unlike key-point
based systems it directly minimizes a photometric error. This
makes it possible for the system to track not only corners,
but any pixels with large enough intensity gradients. IMU
information is accumulated between several frames using mea-
surement preintegration, and is inserted into the optimization
as an additional constraint between keyframes. We explicitly
include scale and gravity direction into our model and jointly
optimize them together with other variables such as poses. As
the scale is often not immediately observable using IMU data
this allows us to initialize our visual-inertial system with an
arbitrary scale instead of having to delay the initialization until
everything is observable. We perform partial marginalization of
old variables so that updates can be computed in a reasonable
time. In order to keep the system consistent we propose a
novel strategy which we call ”dynamic marginalization”. This
technique allows us to use partial marginalization even in
cases where the initial scale estimate is far from the optimum.
We evaluate our method on the challenging EuRoC dataset,
showing that VI-DSO outperforms the state of the art.

I. INTRODUCTION

Motion estimation and 3D reconstruction are crucial tasks
for robots. In general, many different sensors can be used
for these tasks: laser rangefinders, RGB-D cameras [14],
GPS and others. Since cameras are cheap, lightweight and
small passive sensors they have drawn a large attention of the
community. Some examples of practical applications include
robot navigation [25] and (semi)-autonomous driving [11].
However, current visual odometry methods suffer from a
lack of robustness when confronted with low textured areas
or fast maneuvers. To eliminate these effects a combination
with another passive sensor - an inertial measurement unit
(IMU) can be used. It provides accurate short-term motion
constraints and, unlike vision, is not prone to outliers.

In this paper we propose a tightly coupled direct approach
to visual-inertial odometry. It is based on Direct Sparse
Odometry (DSO) [6] and uses a bundle-adjustment like
photometric error function that simultaneously optimizes 3D
geometry and camera poses in a combined energy functional.
We complement the error function with IMU measurements.
This is particularly beneficial for direct methods, since the
error function is highly non-convex and a good initialization
is important. A key drawback of monocular visual odometry
is that it is not possible to obtain the metric scale of the
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Fig. 1: Bottom: Example images from the EuRoC-dataset:
Low illumination, strong motion blur and little texture im-
pose significant challenges for odometry estimation. Still our
method is able to process all sequences with a rmse of
less then 0.23m. Top: Reconstruction, estimated pose (red
camera) and groundtruth pose (green camera) at the end of
V1 03 difficult.

environment. Adding an IMU enables us to observe the
scale. Yet, depending on the performed motions this can
take infinitely long, making the initialization a challenging
task. Rather than relying on a separate IMU initialization we
include the scale as a variable into the model of our system
and jointly optimize it together with the other parameters.

Quantitative evaluation on the EuRoC dataset [2] demon-
strates that we can reliably determine camera motion and
sparse 3D structure (in metric units) from a visual-inertial
system on a rapidly moving micro aerial vehicle (MAV)
despite challenging illumination conditions (Fig. 1).

In summary, our contributions are:
• a direct sparse visual-inertial odometry system.
• a novel initialization strategy where scale and gravity

direction are included into the model and jointly opti-
mized after initialization.

• we introduce ”dynamic marginalization” as a technique
to adaptively employ marginalization strategies even in
cases where certain variables undergo drastic changes.

• an extensive evaluation on the challenging EuRoC
dataset showing that both, the overall system and the



initialization strategy outperform the state of the art.

II. RELATED WORK

Motion estimation using cameras and IMUs has been a
popular research topic for many years. In this section we
will give a summary of visual, and visual-inertial odometry
methods. We will also discuss approaches to the initializa-
tion of monocular visual-inertial odometry, where the initial
orientation, velocity and scale are not known in advance.

The term visual odometry was introduced in the work
of Nister et al. [24], who proposed to use frame-to-frame
matching of the sparse set of points to estimate the motion
of the cameras. Most of the early approaches were based
on matching features detected in the images, in particular
MonoSLAM [5], a real-time capable EKF-based method.
Another prominent example is PTAM [15], which combines
a bundle-adjustment backend for mapping with real-time
capable tracking of the camera relative to the constructed
map. Recently, a feature-based system capable of large-scale
real-time SLAM was presented by Mur-Artal et al. [21].

Unlike feature-based methods, direct methods use un-
processed intensities in the image to estimate the motion
of the camera. The first real-time capable direct approach
for stereo cameras was presented in [4]. Several methods for
motion estimation for RGB-D cameras were developed by
Kerl et al. [14]. More recently, direct approaches were also
applied to monocular cameras, in a dense [23], semi-dense
[7], and sparse fashion [10] [6].

Due to the complementary nature of the IMU sensors,
there were many attempts to combine them with vision.
They provide good short-term motion prediction and make
roll and pitch angles observable. At first, vision systems
were used just as a provider of 6D pose measurements
which were then inserted in the combined optimization.
This, so-called loosely coupled approach, was presented in
[20] and [8]. It is generally easier to implement, since the
vision algorithm requires no modifications. On the other
hand, tightly coupled approaches jointly optimize motion
parameters in a combined energy function. They are able
to capture more correlations in the multisensory data stream
leading to more precision and robustness. Several prominent
examples are filtering based approaches [17] [1] and energy-
minimization based approaches [16] [9] [26] [22].

Another issue relevant for the practical use of monocular
visual-inertial odometry is initialization. Right after the start,
the system has no prior information about the initial pose,
velocities and depth values of observed points in the image.
Since the energy functional that is being minimized is highly
non-convex, a bad initialization might result in divergence
of the system. The problem is even more complicated, since
some types of motion do not allow to uniquely determine
all these values. A closed form solution for initialization,
together with analysis of the exceptional cases was presented
in [19], and extended to consider IMU biases in [12].

III. DIRECT SPARSE VISUAL-INERTIAL ODOMETRY

The following approach is based on iterative minimization
of photometric and inertial errors in a non-linear optimization

framework. To make the problem computationally feasible
the optimization is performed on a window of recent frames
while all older frames get marginalized out. Our approach is
based on [6] and can be viewed as a direct formulation of
[16]. In contrast to [26], we jointly determine poses and 3D
geometry from a single optimization function. This results
in better precision especially on hard sequences. Compared
to [9] we perform a full bundle-adjustment like optimization
instead of including structure-less vision error terms.

The proposed approach estimates poses and depths by
minimizing the energy function

Etotal = λ · Ephoto + Einertial (1)

which consists of the photometric error Ephoto (section III-B)
and an inertial error term Einertial (section III-C).

The system contains two main parts running in parallel:
• The coarse tracking is executed for every frame and uses

direct image alignment combined with an inertial error
term to estimate the pose of the most recent frame.

• When a new keyframe is created we perform a visual-
inertial bundle adjustment like optimization that esti-
mates the geometry and poses of all active keyframes.

In contrast to [22] we do not wait for a fixed amount of
time before initializing the visual-inertial system but instead
we jointly optimize all parameters including the scale. This
yields a higher robustness as inertial measurements are used
right from the beginning.

A. Notation

Throughout the paper we will use the following notation:
bold upper case letters H represent matrices, bold lower
case x vectors and light lower case λ represent scalars.
Transformations between coordinate frames are denoted as
Ti j ∈ SE(3) where point in coordinate frame i can be
transformed to the coordinate frame j using the following
equation pi = Ti jpj . We denote Lie algebra elements as
ξ̂ ∈ se(3), where ξ ∈ R6, and use them to apply small in-

crements to the 6D pose ξ′i j = ξi j�ξ := log
(
eξ̂i j · eξ̂

)∨
.

We define the world as a fixed inertial coordinate frame
with gravity acting in negative Z axis. We also assume that
the transformation from camera to IMU frame Timu cam is
fixed and calibrated in advance. Factor graphs are expressed
as a set G of factors and we use G1 ∪G2 to denote a factor
graph containing all factors that are either in G1 or in G2.

B. Photometric Error

The photometric error of a point p ∈ Ωi in reference frame
i observed in another frame j is defined as follows:

Epj =
∑

p∈Np

ωp

∥∥∥∥(Ij [p
′]− bj)−

tje
aj

tieai
(Ii[p]− bi)

∥∥∥∥
γ

, (2)

where Np is a small set of pixels around the point p, Ii and
Ij are images of respective frames, ti, tj are the exposure
times, ai, bi, aj , bj are the coefficients to correct for affine
illumination changes, γ is the Huber norm, ωp is a gradient-
dependent weighting and p′ is the point projected into Ij .



With that we can formulate the photometric error as

Ephoto =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj , (3)

where F is a set of keyframes that we are optimizing, Pi is
a sparse set of points in keyframe i, and obs(p) is a set of
observations of the same point in other keyframes.

C. Inertial Error

In order to construct the error term that depends on
rotational velocities measured by the gyroscope and linear
acceleration measured by the accelerometer we use the
nonlinear dynamic model defined in [26, eq. (6), (7), (8)].

As IMU data is obtained with a much higher frequency
than images we follow the preintegration approach proposed
in [18] and improved in [3] and [9]. This allows us to
add a single IMU factor describing the pose between two
camera frames. For two states si and sj (based on the
state definition in Equation (9)), and IMU-measurements ai,j
and ωi,j between the two images we obtain a prediction
ŝj as well as an associated covariance matrix Σ̂s,j . The
corresponding error function is

Einertial(si, sj) := (sj � ŝj)
T

Σ̂−1s,j (sj � ŝj) (4)

where the operator � applies ξj �
(
ξ̂j

)−1
for poses and a

normal subtraction for other components.

D. IMU Initialization and the problem of observability

In contrast to a purely monocular system the usage of
inertial data enables us to observe metric scale and gravity
direction. This also implies that those values have to be
properly initialized, otherwise optimization might diverge.
Initialization of the monocular visual-inertial system is a well
studied problem with an excellent summary provided in [19].
[19, Tables I and II] show that for certain motions immediate
initialization is not possible, for example when moving
with zero acceleration and constant non-zero velocity. To
demonstrate that it is a real-world problem and not just
a theoretical case we note that the state-of-the-art visual-
inertial SLAM system [22] uses the first 15 seconds of
camera motion for the initialization on the EuRoC dataset
to make sure that all values are observable.

Therefore we propose a novel strategy for handling this
issue. We explicitly include scale (and gravity direction) as a
parameter in our visual-inertial system and jointly optimize
them together with the other values such as poses and
geometry. This means that we can initialize with an arbitrary
scale instead of waiting until it is observable. We initialize
the various parameters as follows.
• We use the same visual initializer as [6] which computes

a rough pose estimate between two frames as well
as approximate depths for several points. They are
normalized so that the average depth is 1.

• The initial gravity direction is computed by averaging
up to 40 accelerometer measurements, yielding a suffi-
ciently good estimate even in cases of high acceleration.

• We initialize the velocity and IMU-biases with zero and
the scale with 1.0.

All these parameters are then jointly optimized during a
bundle adjustment like optimization.

E. SIM(3)-based Representation of the World

In order to be able to start tracking and mapping with a
preliminary scale and gravity direction we need to include
them into our model. Therefore in addition to the metric
coordinate frame we define the DSO coordinate frame to
be a scaled and rotated version of it. The transformation
from the DSO frame to the metric frame is defined as
Tm d ∈ {T ∈ SIM(3) | translation(T) = 0}, together
with the corresponding ξm d = log(Tm d) ∈ sim(3). We
add a superscript D or M to all poses denoting in which
coordinate frame they are expressed. In the optimization the
photometric error is always evaluated in the DSO frame,
making it independent of the scale and gravity direction,
whereas the inertial error has to use the metric frame.

F. Scale-aware Visual-inertial Optimization

We optimize the poses, IMU-biases and velocities of a
fixed number of keyframes. Fig. 2a shows a factor graph
of the problem. Note that there are in fact many sepa-
rate visual factors connecting two keyframes each, which
we have combined to one big factor connecting all the
keyframes in this visualization. Each IMU-factor connects
two subsequent keyframes using the preintegration scheme
described in section III-C. As the error of the preintegration
increases with the time between the keyframes we ensure
that the time between two consecutive keyframes is not
bigger than 0.5 seconds which is similar to what [22] have
done. Note that in contrast to their method however we
allow the marginalization procedure described in section III-
F.2 to violate this constraint which ensures that long-term
relationships between keyframes can be properly observed.

An important property of our algorithm is that the opti-
mized poses are not represented in the metric frame but in
the DSO frame. This means that they do not depend on the
scale of the environment.

1) Nonlinear Optimization: We perform nonlinear opti-
mization using the Gauss-Newton algorithm. For each active
keyframe we define a state vector

si := [
(
ξDcami w

)T
,vTi , b

T
i , ai, bi, d

1
i , d

2
i , ..., d

m
i ]T (5)

where vi ∈ R3 is the velocity, bi ∈ R6 is the current IMU
bias, ai and bi are the affine illumination parameters used
in equation (2) and dji are the inverse depths of the points
hosted in this keyframe.

The full state vector is then defined as

s = [cT , ξTm d, s
T
1 , s

T
2 , ..., s

T
n ]T (6)

where c contains the geometric camera parameters and ξm d

denotes the translation-free transformation between the DSO
frame and the metric frame as defined in section III-E.
We define the operator s � s′ to work on state vectors by



(a) Factor graph for the visual-inertial optimization. (b) Factor graph after keyframe 1 was marginalized.

Fig. 2: Factor graphs for the visual-inertial joint optimization before and after the marginalization of a keyframe.

applying the concatenation operation ξ � ξ′ for Lie algebra
components and a plain addition for other components.

Using the stacked residual vector r we define

J =
dr (s� ε)

dε

∣∣∣∣
ε=0

, H = JTWJ and b = −JTWr

(7)
where W is a diagonal weight matrix. Then the update

that we compute is δ = H−1b.
Note that the visual energy term Ephoto and the inertial

error term Eimu do not have common residuals. Therefore
we can divide H and b each into two independent parts

H = Hphoto + Himu and b = bphoto + bimu (8)

As the inertial residuals compare the current relative pose
to the estimate from the inertial data they need to use poses
in the metric frame relative to the IMU. Therefore we define
additional state vectors for the inertial residuals.

s′i := [ξMw imui
,vi, bi]

T and s′ =
[
s′T1 , s

′T
2 , ..., s

′T
n

]T
(9)

The inertial residuals lead to

H′imu = J′TimuWimuJ
′
imu and b′imu = −J′TimuWimurimu (10)

For the joint optimization however we need to obtain Himu
and bimu based on the state definition in Equation (6). As
the two definitions mainly differ in their representation of
the poses we can compute Jrel such that

Himu = JTrel ·H′imu · Jrel and bimu = JTrel · b′imu (11)

The computation of Jrel is detailed in the supplementary ma-
terial. Note that we represent all transformations as elements
of sim(3) and fix the scale to 1 for all of them except ξm d.

2) Marginalization using the Schur-Complement: In or-
der to compute Gauss-Newton updates in a reasonable
time-frame we perform partial marginalization for older
keyframes. This means that all variables corresponding to
this keyframe (pose, bias, velocity and affine illumination pa-
rameters) are marginalized out using the Schur complement.
Fig. 2b shows how marginalization changes the factor graph.

The marginalization of the visual factors is handled as in
[6] by dropping residual terms that affect the sparsity of the
system and by first marginalizing all points in the keyframe
before marginalizing the keyframe itself.

(a) Gmetric (b) Gvisual

Fig. 3: Partitioning of the factor graph from Fig. 2a into
Gmetric and Gvisual. Gmetric contains all IMU-factors while
Gvisual contains the factors that do not depend on ξm d. Note
that both of them do not contain any marginalization factors.

Marginalization is performed using the Schur-complement
[6, eq. (16), (17) and (18)]. As the factor resulting from
marginalization requires the linearization point of all con-
nected variables to remain fixed we apply [6, eq. (15)] to
approximate the energy around further linearization points.

In order to maintain consistency of the system it is
important that Jacobians are all evaluated at the same value
for variables that are connected to a marginalization factor as
otherwise the nullspaces get eliminated. Therefore we apply
”First Estimates Jacobians”. For the visual factors we follow
[6] and evaluate Jphoto and Jgeo at the linearization point.
When computing the inertial factors we fix the evaluation
point of Jrel for all variables which are connected to a
marginalization factor. Note that this always includes ξm d.

3) Dynamic Marginalization for Delayed Scale Conver-
gence: The marginalization procedure described in sub-
section III-F.2 has two purposes: reduce the computation
complexity of the optimization by removing old states and
maintain the information about the previous states of the
system. This procedure fixes the linearization points of the
states connected to the old states, so they should already
have a good estimate. In our scenario this is the case for all
variables except of scale.

The main idea of ”Dynamic marginalization” is to main-
tain several marginalization priors at the same time and reset
the one we currently use when the scale estimate moves too
far from the linearization point in the marginalization prior.

In our implementation we use three marginalization priors:
Mvisual, Mcurr and Mhalf. Mvisual contains only scale inde-
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that Mcurr contains the inertial factors since the last blue or red dotted line that is before the last red dotted line. For example
at 16s it contains all inertial data since the blue line at 9 seconds.

pendent information from previous states of the vision and
cannot be used to infer the global scale. Mcurr contains all
information since the time we set the linearization point for
the scale and Mhalf contains only the recent states that have
a scale close to the current estimate.

When the scale estimate deviates too much from the
linearization point of Mcurr, the value of Mcurr is set to Mhalf
and Mhalf is set to Mvisual with corresponding changes in
the linearization points. This ensures that the optimization
always has some information about the previous states with
consistent scale estimates. In the remaining part of the
section we provide the details of our implementation.

We define Gmetric to contain only the visual-inertial factors
(which depend on ξm d) and Gvisual to contain all other
factors, except the marginalization priors. Then

Gfull = Gmetric ∪Gvisual (12)

Fig. 3 depicts the partitioning of the factor graph.
We define three different marginalization factors Mcurr,

Mvisual and Mhalf. For the optimization we always compute
updates using the graph

Gba = Gmetric ∪Gvisual ∪Mcurr (13)

When keyframe i is marginalized we update Mvisual with
the factor arising from marginalizing frame i in Gvisual ∪
Mvisual. This means that Mvisual contains all marginalized
visual factors and no marginalized inertial factors making
it independent of the scale.

For each marginalized keyframe i we define

si := scale estimate at the time, i was marginalized (14)

We define i ∈ M if and only if M contains an inertial
factor that was marginalized at time i. Using this we enforce
the following constraints for inertial factors.

∀i ∈Mcurr : si ∈ [smiddle/di, smiddle · di] (15)

∀i ∈Mhalf : si ∈

{
[smiddle, smiddle · di] , if scurr > smiddle

[smiddle/di, smiddle] , otherwise
(16)

where smiddle is the current middle of the allowed scale
interval (initialized with s0), di is the size of the scale interval
at time i, and scurr is the current scale estimate.

We update Mcurr by marginalizing frame i in Gba and we
update Mhalf by marginalizing i in Gmetric ∪Gvisual ∪Mhalf

In order to preserve the constraints in Equations (15)
and (16) we apply Algorithm 1 everytime a marginalization
happens. By following these steps on the one hand we make
sure that the constraints are satisfied which ensures that the
scale difference in the currently used marginalization factor
stays smaller than d2i . On the other hand the factor always
contains some inertial factors so that the scale estimation
works at all times. Note also that Mcurr and Mhalf have
separate First Estimate Jacobians that are employed when
the respective marginalization factor is used. Fig. 4 shows
how the system works in practice.

Algorithm 1 Constrain Marginalization
upper← scurr > smiddle
if upper 6= lastUpper then . Side changes.

Mhalf ←Mvisual
end if
if scurr > smiddle · di then . Upper boundary exceeded.

Mcurr ←Mhalf
Mhalf ←Mvisual
smiddle ← smiddle · di

end if
if scurr < smiddle/di then . Lower boundary exceeded.

Mcurr ←Mhalf
Mhalf ←Mvisual
smiddle ← smiddle/di

end if
lastUpper← upper

An important part of this strategy is the choice of di. It
should be small, in order to keep the system consistent,
but not too small so that Mcurr always contains enough
inertial factors. Therefore we chose to dynamically adjust
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Fig. 5: rmse for different methods run 10 times (lines) on
each sequence (columns) of the EuRoC dataset.

the parameter as follows. At all time steps i we calculate

di = min {djmin | j ∈ N \ {0}, si
si−1

< di} (17)

This ensures that it cannot happen that the Mhalf gets reset
to Mvisual at the same time that Mcurr is exchanged with
Mhalf. Therefore it prevents situations where Mcurr contains
no inertial factors at all, making the scale estimation more
reliable. In our experiments we chose dmin =

√
1.1.

G. Coarse Visual-Inertial Tracking

The coarse tracking is responsible for computing a fast
pose estimate for each frame that also serves as an ini-
tialization for the joint optimization detailed in III-F. We
perform conventional direct image alignment between the
current frame and the latest keyframe, while keeping the
geometry and the scale fixed. Inertial residuals using the
previously described IMU preintegration scheme are placed
between subsequent frames. Everytime the joint optimization
is finished for a new frame, the coarse tracking is reinitialized
with the new estimates for scale, gravity direction, bias,
and velocity as well as the new keyframe as a reference
for the visual factors. Similar to the joint optimization we
perform partial marginalization to keep the update time
constrained. After estimating the variables for a new frame
we marginalize out all variables except the keyframe pose
and the variables of the newest frame. In contrast to the joint
optimization we do not need to use dynamic marginalization
because the scale is not included in the optimization.

IV. RESULTS

We evaluate our approach on the publicly available EuRoC
dataset [2]. The performance is compared to [6], [1], [21],
[26], [16] and [13]. We also provide supplementary material
with more evaluation and a video at vision.in.tum.de/vi-dso.
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Fig. 6: Cumulative error plot on the EuRoC-dataset (RT
means realtime). This experiment demonstrates that the ad-
ditional IMU not only provides a reliable scale estimate, but
that it also significantly increases accuracy and robustness.

A. Robust Quantitative Evaluation

In order to obtain an accurate evaluation we run our
method 10 times for each sequence of the dataset (using
the left camera). We directly compare the results to visual-
only DSO [6] and ROVIO [1]. As DSO cannot observe the
scale we evaluate using the optimal ground truth scale in
some plots (with the description ”gt-scaled”) to enable a
fair comparison. For all other results we scale the trajectory
with the final scale estimate (our method) or with 1 (other
methods). For DSO we use the results published together
with their paper. We use the same start and end times for each
sequence to run our method and ROVIO. Note that the drone
has a high initial velocity in some sequences when using
these start times making it especially challenging for our
IMU initialization. Fig. 5 shows the root mean square error
(rmse) for every run and Fig. 6 displays the cumulative error
plot. Clearly our method significantly outperforms DSO and
ROVIO. Without inertial data DSO is not able to work on all
sequences especially on V1 03 difficult and V2 03 difficult
and it is also not able to scale the results correctly. ROVIO on
the other hand is very robust but as a filtering-based method
it cannot provide sufficient accuracy.

Table I shows a comparison to several other methods. For
our results we have displayed the median error for each
sequence from the 10 runs plotted in Fig. 5c. This makes the
results very meaningful. For the other methods unfortunately
only one result was reported so we have to assume that they
are representative as well. The results for [16] and [13] were
taken from [13]. The results for [21] (as reported in their
paper) differ slightly from the other methods as they show the
error of the keyframe trajectory instead of the full trajectory.
This is a slight advantage as keyframes are bundle-adjusted
in their method which does not happen for the other frames.

http://vision.in.tum.de/vi-dso


TABLE I: Accuracy of the estimated trajectory on the EuRoC dataset for several methods. Note that ORB-SLAM does a
convincing job showing leading performance on some of the sequences. Nevertheless, since our method directly works on
the sensor data (colors and IMU measurements), we observe similar precision and a better robustness – even without loop
closuring. Moreover, the proposed method is the only one not to fail on any of the sequences.

Sequence MH1 MH2 MH3 MH4 MH5 V11 V12 V13 V21 V22 V23

VI-DSO (our method, RT)
(median of 10 runs each)

RMSE 0.062 0.044 0.117 0.132 0.121 0.059 0.067 0.096 0.040 0.062 0.174
RMSE gt-scaled 0.041 0.041 0.116 0.129 0.106 0.057 0.066 0.095 0.031 0.060 0.173
Scale Error (%) 1.1 0.5 0.4 0.2 0.8 1.1 1.1 0.8 1.2 0.3 0.4

VI ORB-SLAM
(keyframe trajectory)

RMSE 0.075 0.084 0.087 0.217 0.082 0.027 0.028 X 0.032 0.041 0.074
RMSE gt-scaled 0.072 0.078 0.067 0.081 0.077 0.019 0.024 X 0.031 0.026 0.073
Scale Error (%) 0.5 0.8 1.5 3.4 0.5 0.9 0.8 X 0.2 1.4 0.7

VI odometry [16], mono RMSE 0.34 0.36 0.30 0.48 0.47 0.12 0.16 0.24 0.12 0.22 X
VI odometry [16], stereo RMSE 0.23 0.15 0.23 0.32 0.36 0.04 0.08 0.13 0.10 0.17 X

VI SLAM [13], mono RMSE 0.25 0.18 0.21 0.30 0.35 0.11 0.13 0.20 0.12 0.20 X
VI SLAM [13], stereo RMSE 0.11 0.09 0.19 0.27 0.23 0.04 0.05 0.11 0.10 0.18 X

In comparison to VI ORB-SLAM our method outperforms
it in terms of rmse on several sequences. As ORB-SLAM
is a SLAM system while ours is a pure odometry method
this is a remarkable achievement especially considering the
differences in the evaluation. Note that the Vicon room
sequences (V*) are executed in a small room and contain
a lot of loopy motions where the loop closures done by a
SLAM system significantly improve the performance. Also
our method is more robust as ORB-SLAM fails to track
one sequence. Even considering only sequences where ORB-
SLAM works our approach has a lower maximum rmse.

Compared to [16] and [13] our method obviously outper-
forms them. It is better than the monocular versions on every
single sequence and it beats even the stereo and SLAM-
versions on 9 out of 11 sequences.

In summary our method is the only one which is able to
track all the sequences successfully except ROVIO.

We also compare the Relative Pose Error to [21] and
[26] on the V1 0*-sequences of EuRoC (Fig. 7). While our
method cannot beat the SLAM system and the stereo method
on the easy sequence we outperform [26] and are as good
as [21] on the medium sequence. On the hard sequence we
outperform both of the contenders even though we neither
use stereo nor loop-closures.

B. Evaluation of the Initialization

There are only few methods we can compare our ini-
tialization to. Some approaches like [19] have not been
tested on real data. While [12] provides results on real data,
the dataset used was featuring a downward-looking camera
and an environment with a lot of features which is not
comparable to the EuRoC-dataset in terms of difficulty. Also
they do not address the problem of late observability which
suggests that a proper motion is performed in the beginning
of their dataset. As a filtering-based method ROVIO does
not need a specific initialization procedure but it also cannot
compete in terms of accuracy making it less relevant for
this discussion. Visual-inertial LSD-SLAM uses stereo and
therefore does not face the main problem of scale estimation.

Therefore we compare our initialization procedure to visual-
inertial ORB-SLAM [21] as both of the methods work on the
challenging EuRoC-dataset and have to estimate the scale,
gravity direction, bias, and velocity.

In comparison to [21] our estimated scale is better overall
(Table I). On most sequences our method provides a better
scale, and our average scale error (0.7% compared to 1.0%)
as well as our maximum scale error (1.2% compared to
3.4%) is lower. In addition our method is more robust as
the initialization procedure of [21] fails on V1 03 difficult.

Apart from the numbers we argue that our approach is
superior in terms of the general structure. While [21] have to
wait for 15 seconds until the initialization is performed, our
method provides an approximate scale and gravity direction
almost instantly, that gets enhanced over time. Whereas in
[21] the pose estimation has to work for 15 seconds without
any IMU data, in our method the inertial data is used to
improve the pose estimation from the beginning. This is
probably one of the reasons why our method is able to
process V1 03 difficult. Finally our method is better suited
for robotics applications. For example an autonomous drone
is not able to fly without gravity direction and scale for 15
seconds and hope that afterwards the scale was observable.
In contrast our method offers both of them right from the
start. The continuous rescaling is also not a big problem as an
application could use the unscaled measurements for building
a consistent map and for providing flight goals, whereas the
scaled measurements can be used for the controller. Fig. 8
shows the scale estimation for MH 04.

Overall we argue that our initialization procedure exceeds
the state of the art and think that the concept of initialization
with a very rough scale estimate and jointly estimating it
during pose estimation will be a useful concept in the future.

V. CONCLUSION

We have presented a novel formulation of direct sparse
visual-inertial odometry. We explicitely include scale and
gravity direction in our model in order to deal with cases
where the scale is not immediately observable. As the initial
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(e) Orientation error V1 02 medium
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(f) Orientation error V1 03 difficult

Fig. 7: Relative Pose Error evaluated on three sequences of the EuRoC-dataset for visual-inertial ORB-SLAM [21], visual-
inertial stereo LSD-SLAM [26] and our method. Although the proposed VI-DSO does not use loop closuring (like [21]) or
stereo (like [26]), VI-DSO is quite competitive in terms of accuracy and robustness. Note that [21] with loop closures is
slightly more accurate on average, yet it entirely failed on V1 03 difficult.
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Fig. 8: Scale estimate for MH 04 difficult (median result
of 10 runs in terms of tracking accuracy). Note how the
estimated scale converges to the correct value despite being
initialized far from the optimum.

scale can be very far from the optimum we have proposed
a novel technique called dynamic marginalization where we
maintain multiple marginalization priors and constrain the
maximum scale difference. Extensive quantitative evalua-
tion demonstrates that the proposed visual-inertial odometry
method outperforms the state of the art, both the complete
system as well as the IMU initialization procedure. In par-
ticular, experiments confirm that the inertial information not
only provides a reliable scale estimate, but it also drastically
increases precision and robustness.
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