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I. DETAILS ON KLT TRACKING

Here we provide a more detailed description of the patch-
based sparse optical flow used in our system. First, we detect
a sparse set of keypoints in the frame using the FAST [22]
corner detector. To track the motion of these points over
a series of consecutive frames we use sparse optical flow
based on KLT [14]. To achieve fast, accurate and robust
tracking we combine the inverse-compositional approach as
described in [1] with the locally scaled sum of squared
differences (LSSD) metric — a brightness-invariant norm for
patch comparison as defined in [21].

We formulate the patch tracking problem as estimating the
transform T ∈ SE(2) between two corresponding patches in
two consecutive frames that minimizes the appearance differ-
ences between the patches. At each optimization iteration we
want to find an update ξ that minimizes the sum of squared
residuals

ri(ξ) =
It+1(Txi)

It+1

− It(Exp(−ξ)xi)

It
∀xi ∈ Ω. (27)

Here, contrary to the rest of the paper, Exp maps from R3 to
SE(2). It(x) and It+1(x) are the image intensities of images
t and t+ 1 at pixel location x. The set of image coordinates
that defines the patch is denoted Ω, and the mean intensity
of the patch in image t and t+1 is It and It+1, respectively.

Here we use an LSSD as a dissimilarity measure between
image patches. This norm is invariant to scaling, so if
we assume a linear response function of our camera, we
get a tracker that is invariant to changes in the exposure
time. Several authors use zero-normalized cross-correlation
(ZNCC) for illumination invariant optical flow [17], [25], but
as shown in [21] ZNCC is computationally more expensive
compared to LSSD.

If we treat all residuals for one patch defined in (27)
as residual vector function r(ξ), we can use the Gauss-
Newton framework defined in (2) - (4) to iteratively min-
imize the error. The only difference here is that instead
of differentiating with respect to an increment to T, we
differentiate with respect to the inverse increment applied to
the image coordinates in the template frame t,but the update
ξ∗ (calculated according to (4)) is still applied to T as

Ti+1 = TiExp(ξ∗) . (28)

As described in [1], with this inverse-compositional approach
the Jacobian J does not depend on the current state of T,
so (J>WJ)−1J>W can be pre-computed. This way we
only need to recompute the residual vector at every iteration

and compute the update. To achieve robustness to large
displacements in the image we use a pyramidal approach,
where the patch is first tracked on the coarsest level and
then on increasingly finer levels.

To filter outliers, instead of an absolute threshold on the
error we track the patches from the current frame to the
target frame and back. Points that did not return to the initial
location after the second tracking are considered as outliers
and discarded.

II. DETAILS ON IMU PREINTEGRATION

To deal with the high frequency of IMU measurements
we preintegrate several consecutive IMU measurements into
a pseudo-measurement. When adding an IMU factor between
frame i and frame j, we compute pseudo-measurement
∆s = (∆R,∆v,∆p) similar to [8]. For this, we compute
bias-corrected accelerations at = araw

t − b̄a
i and rotational

velocities ωt = ωraw
t − b̄g

i using the raw accelerometer araw
t

and gyroscope ωraw
t measurements. We fix the corresponding

biases b̄a
i and b̄g

i for the entire preintegration time and
use linear approximation to account for changes in these
variables.

For the timestamp ti of frame i, we assign the initial state
delta ∆sti = (I,0,0). Then, for each IMU timestamp t
satisfying ti < t ≤ tj the following updates are calculated.

∆Rt+1 = ∆RtExp(ωt+1∆t) , (29)
∆vt+1 = ∆vt + ∆Rtat+1∆t , (30)
∆pt+1 = ∆pt + ∆vt∆t . (31)

This defines ∆st+1 as a function of ∆st, at+1, and ωt+1,

∆st+1 = f(∆st,at+1,ωt+1) , (32)

with corresponding Jacobian Jf = [Js
f ,J

a
f ,J

g
f ]. Further-

more, all previous iterations of f up to t + 1 define ∆st+1

as a function of the biases,

∆st+1 = gt+1(ba
i,b

g
i ) . (33)

Starting with zero-initialization, the corresponding Jacobian
Jgt+1 = [Ja

gt+1
,Jg

gt+1 ] can be computed recursively using
Jf ,

Ja
gt+1

= Js
fJa

gt − Ja
f , (34)

Jg
gt+1

= Js
fJg

gt − Jg
f , (35)

which results from the chain rule. Eventually, the Jacobians
of gtj are denoted Jg and Ja. Small changes in biases can



be represented as increments to the linearization point ba
i =

b̄a
i + εa and bg

i = b̄g
i + εg. Then, ∆s is approximated as

∆s̃(ba
i,b

g
i ) = ∆s(b̄a

i, b̄
g
i )⊕ (Jaεa + Jgεg) , (36)

with components ∆s̃ = (∆R̃,∆ṽ,∆p̃). The residuals are
then calculated as

r∆R = Log
(

∆R̃R>j Ri

)
, (37)

r∆v = R>i (vj − vi − g∆t)−∆ṽ , (38)

r∆p = R>i (pj − pi −
1

2
g∆t2)−∆p̃ , (39)

where g is the gravity vector and R and p denote the
rotation and translation components of TWI, respectively.
These residuals have to be weighted with an appropriate
covariance matrix, which can be also calculated recursively.
Starting from Σti = 0, updates are calculated as

Σt+1 = Js
fΣtJ

s
f
> + Ja

fΣaJa
f
> + Jg

fΣgJg
f
>
, (40)

with diagonal matrices Σa and Σg that contain the hardware-
specific IMU noise parameters for accelerometer and gyro-
scope. For more detailed information about the underlying
physical model of the IMU and preintegration theory we refer
the reader to [8].
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Fig. 1: Translation and rotation RPE on the Machnie Hall sequences of the Euroc dataset.
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Fig. 2: Translation and rotation RPE on the Vicon Room sequences of the Euroc dataset.


